

Development of a Robotic Limb for Underwater Mobile Manipulation

J. Koch, T. Pailevanian, M. Garrett, C. Yahnker, R. Detry, D. Levine, M. Gildner

Email: matthew.gildner@jpl.nasa.gov

Motivation

Develop manipulation technologies to extend the effectiveness, functionality and accessibility of ROV Operations by adapting technologies from Mars Rovers and other JPL robotic manipulation systems.

Live 3D Scene Reconstruction of Robot Workspaces

- Increased operator situational awareness
- Vision in the loop operations

Supervised Autonomy for Intent-Based Operations

Point → Click → Simulate → Execute Workflows

Dexterous Limb Hardware Architectures

- Low integration required on host vehicle
- Deploy on wider range of vehicle classes
- Mobility as manipulation

AquaSimian Limb

Specifications

Reach: 1.25m

Lift at Full Extension: 20kg

Max Speed at Gripper: 2 m/s

Functions: 10

Control: FWD Kinematic

Position Ctrl

6-Axis Force/Torque Ctrl

Limb Power: 100V / 50A

Telemetry: EtherCAT / RS-485

Weight in air: 40kg

Weight in water: 15kg

Outline

Hardware Design Actuator, Limb Architecture

Concept of Operations Operator Interface, Automation, Behaviors

System Testing
Laboratory, Field

Hardware Design Objectives

- Generalized, Modular, All-Electric Design
- 7 Degrees of Freedom
- Absolute Joint Position Sensing
- 3 Degree of Freedom End Effector with F/T Sensing
- Human–Scale Reach and Force Application
- 360°+ Joint Rotation
- Compartmental, Vacuum Sealing at 30m Depth
- Leverage Heritage of Robosimian System

S-PRIME Actuator

Sealed - Performance Robotic Integrated Modular Electric

- Developed around 100V Brusheless DC Frameless Motor
- 160:1 Harmonic Geartrain with Cross-Roller Bearing on Output
- Embedded Elmo Gold Whistle Ethercat Motor Controller
- Custom Actuator Motherboard PCB
 - Brake Driving
 - Position Sensor Comms
 - Pressure, Temperature, Humidity Sensing
 - Actuator Serial Bus Comms
- Magnetic Brake
- Teflon Rotary Dynamic Seal and O-ring static seals

- 1) S-Prime Actuator 2) Housing
- 3) Drivetrain
- 4) Electronics

S-PRIME Actuator: Spec Sheet

Sealed - Performance Robotic Integrated Modular Electric

Parameter	Value
Size	225 mm (L) x 120 mm (Dia)
Depth Rating	30m
Weight (air)	4.2 kg
Weight (water)	1.6 Kg
Max Torque	285 Nm
Max Speed	135 deg/s
Braking	220 Nm
Power	100V, 14A
Communication	Ethercat, RS-485

AquaSimian Limb: Architecture

AquaSimian Limb: Environment Monitoring

Purpose

- Monitor internal housing state to detect for leaks
- Enable auto e-stop in case of leak

Sensors

Pressure, temp, humidity

Process

- Vacuum and dry purge each sealed volume through valve on housing lids
- Query actuator motherboards sensors over serial bus
- Provide visual display of sensor readings compared to thresholds
- Trigger auto-estop if loss of telemetry

AquaSimian Limb: Serviceability

Stow

 Compact stow configuration for transport and vehicle integration

2ft X 2ft X2ft

Actuator Servicing

 2-Bolt Marman Clamp interface for actuator removal

Lid for actuator electronic access

Light Lid

- Lid embedded with LED Array and Controller
- Actuator State
- Leak Diagnostics

Concept of Operations

Concept of Operations: Control

Operator Computer (Intel NUC)

- Operator Control Interface
 - State Visualization
 - Behavior Selection
 - Move Preview
- Module Control
 - Start/stop of control modules
 - Software EStop

Limb Computer (Intel NUC)

- Trajectory Generator
- Motor Control Interface
- Environmental Monitoring

Concept of Operations: Perception

Sensor Head

Raw Images

Raw Pointclouds

Fused Pointcloud

System Testing: Lab

Limb Moving Through Hand-Eye Calibration Postures

Paddle Valve Turn with Static End Effector

System Testing: Field

System Testing: Field

System Testing: Field

Future Work

Hardware

 3 DoF End Effector with 6-axis F/T Sensor

Software

- CAD fitting in operator workflow
- Force in the loop insertion behavior

Demonstration

- Closed loop Hot Stab Insertion
- Closed loop Valve Turn

Development of a Robotic Limb for Underwater Mobile Manipulation

J. Koch, T. Pailevanian, M. Garrett, C. Yahnker, R. Detry, D. Levine, M. Gildner

jpl.nasa.gov